Revisions of cyclically adjusted budget balances

M atthias Busse
FIRSTRUN workshop

Structural budget balances

- SGP: Headline figures of 3% deficit and 60% debt
- Post-crisis reform: Emphasis on structural balance
- Six Pact
- Treaty on Stability Coordination and Governance

Ambition:

- Avoid pro-cyclical fiscal policy stance
- Create buffer for 'bad times'
- Debt sustainability

Unobservable target

1. Output gap not observable

- Estimates depend on model choice
- Difference across institutions
\rightarrow Estimated gap heavily revised

2. Headline deficit forecast errors
3. Revisions of (potential) GDP figures

CE
PS

Potential repercussions for SGP

Structural balance ex ante and ex post differ greatly

1. Unwarranted sanctions (\& vice versa)
2. Debt sustainability
3. Ex post ill-suited policy advice (tightening/loosening)

CE
PS

Growing literature in the field

1. Magnitude of revisions

2. Difference across models and institutions
3. Ex ante fiscal stance counter-cyclical
4. De-composition of revisions (\rightarrow drivers)
5. Political cycle matters
6. Policy implications for the SGP

Aim of the study

- How large are the revisions of Commission estimates (ex-ante, real-time, ex-post)
- Are revisions of the CAB larger at the turn of the cycle?
- Systematic revision or clustered?
- Imprecise when most needed?
\rightarrow different policy implications
- What factors may mitigate the impact of revisions on the SGP?
- What safeguards have been put in place?

Dataset

- European Commission's Spring and Autumn forecasts
- Country coverage: EA12+Denmark, Sweden and UK
- Period: 2003-2016
- Not SB but CAB
- Data is freely available at http://www.firstrun.eu/
- $C A B_{\text {revision }}=C A B_{t}^{T}-C A B_{t}^{t-x}$

C昆

M agnitude of revisions: OG

Output gap							
	$\mathrm{t}-1$ Spr	t -1 Aut	t Spr	t Aut	$\mathrm{t}+1$ Spr	$\mathrm{t}+1$ Aut	
Mean	0.7	0.8	1.0	1.0	0.8	0.6	
Stdev	2.5	2.1	1.7	1.5	1.4	1.1	
Min	-6.4	-4.8	-3.8	-3.4	-3.2	-2.4	
Max	7.7	6.6	5.6	5.4	4.9	3.7	
Median	1.1	0.9	0.9	0.6	0.6	0.5	
Mean Abs	2.1	1.8	1.6	1.3	1.2	1.0	

$\stackrel{C}{\mathrm{CE}}$

M agnitude of revisions: CAB

	Cydically adjusted balance					
	t-1 Spr	t-1 Aut	t Spr	t Aut	t+1 Spr	t+1 Aut
Mean	-0.7	-0.8	-0.7	-0.5	-0.6	-0.5
Stdev	2.7	2.4	2.1	1.6	1.3	1.0
Min	-13.0	-12.8	-10.4	-8.9	-6.0	-4.9
Max	4.9	4.1	3.4	3.6	2.5	1.6
Median	-0.4	-0.4	-0.4	-0.4	-0.4	-0.3
Mean Abs	1.8	1.7	1.4	1.2	1.0	0.8

$\xrightarrow{\mathrm{CES}}$

Country properties

- Large difference between countries:
\rightarrow Largest revisions for EL and IE, lowest DE and IT
- Always downward correction?
$\rightarrow B E,(-1) E L$, FR, IT and PT vs. (-1) Lux and DE

M ethodology: turn of the cycle

Identifying the turns

- Large cycles vs. small cycles
- Size of the output gap
- Dummy
- Dummy specification:
- Switch in sign of the OG growth rate
- Threshold: minimum growth rate (1% GDP, $\mathrm{t}-1 \rightarrow \mathrm{t}+2$)
\rightarrow Alternative approaches (av., peak2peak etc.)

Revisions of the CAB and OG

$\left(C A B_{t}^{T}-C A B_{t}^{t-x}\right)=\alpha+\beta O G_{t}^{T}$

	$\begin{array}{r} \text { t-1_spring } \\ \text { b/se } \end{array}$	t-1 autumn b/se	$\begin{array}{r} \text { t_spring } \\ \text { b/se } \end{array}$	$\begin{array}{r} t_{-}{ }^{2 u t u m n} \\ b / s e \end{array}$	$\begin{array}{r} \text { t+1_spring } \\ \text { b/se } \end{array}$	t+1 autumn b/se
OG_f	-0.179*4	-0.153*4	-0.239*4	-0.264**	-0.262**	-0.185**
	(0.06)	(0.05)	(0.04)	(0.03)	(0.02)	(0.02)
constant	-0.855*4	-0.966 ${ }^{4}$	-0.984*4	-0.874444	-0.913*4	-0.76844
	(0.31)	(0.32)	(0.31)	(0.23)	(0.17)	(0.13)
工2_*	0.078	0.077	0.233	0.412	0.496	0.383
r2_b	0.239	0.354	0.391	0.321	0.132	0.163
r2_0	0.029	0.015	0.065	0.164	0.305	0.226

${ }^{4} p<0.05,42 p<0.01,42 p<0.001$

Directional relationship: OG larger, CAB downwards (worsening)

Introducing the dummy

$$
\left.\left(C A B_{t}^{T}-C A B_{t}^{t}\right)\right)=\alpha+\beta_{1} O G_{t}^{T}+\beta_{2} O G_{t}^{T} * \text { Dummy }_{t}^{\text {turn }}+\text { Dummy }_{t}^{\text {turn }}
$$

Random-effects GLS regression Group variable: id				Number	f obs	176
				Number	f groups	15
$\begin{array}{ll} \text { R-sq: } & \text { within }=0.3954 \\ & \text { between }=0.2682 \\ & \text { overall }=0.1814 \end{array}$				Obs per	group: min	9
					av	11.7
					ma	12
$\operatorname{corr}(\mathrm{u}$ _i, X$)=0$ (assumed)				Wald ch	2 (3)	80.05
				Prob >	hi2	0.0000
$c a b _e _t _a$	Coef.	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Con	Interval]
$\begin{array}{r} \text { int_og_turn }^{\text {og }_{1} f} \\ \text { turn1 } \\ \text { _cons } \end{array}$	-. 2117846	. 0348088	-6.08	0.000	-. 2800087	-. 1435606
	-. 131167	. 0626913	-2.09	0.036	-. 2540397	-. 0082942
	-. 3658655	. 1855456	-1.97	0.049	-. 7295281	-. 0022028
	-. 691631	. 1897327	-3.65	0.000	-1.0635	-. 3197617
$\begin{array}{r} \text { sigma_u } \\ \text { sigma_e } \\ \text { rho } \end{array}$	$\begin{aligned} & .54717216 \\ & 1.0377213 \end{aligned}$					
	. 21754375	(fraction of variance due to u_i)				

Revisions by estimation date

	$\begin{array}{r} \text { t-1_spring } \\ \text { b/se } \end{array}$	t-1 autumn b/se	$\begin{array}{r} \text { t_spring } \\ \text { b/se } \end{array}$	$\begin{array}{r} \text { t_autumn }_{\text {b/se }} \end{array}$	$\begin{array}{r} \mathrm{t}+1 \text { spring } \\ \mathrm{b} / \mathrm{se} \end{array}$	t+1 autumn b/se
peak	0.492	-0.225	-0.248	-0.524	-0.467*	-0.274
	(0.61)	(0.53)	(0.49)	(0.27)	(0.23)	(0.20)
trough	-0.007	0.025	0.926 *	0.701**	0.657 **	0.263
	(0.63)	(0.48)	(0.44)	(0.25)	(0.21)	(0.18)
constant	-0.895*	-0.879*	-0.989**	-0.640*	-0.664***	-0.559***
	(0.37)	(0.38)	(0.37)	(0.25)	(0.17)	(0.14)
r2_w	0.004	0.002	0.030	0.085	0.095	0.031
r2_b	0.096	0.099	0.143	0.126	0.155	0.142
r2_0	0.005	0.001	0.030	0.067	0.085	0.029

* $\mathrm{p}<0.05$, ** $\mathrm{p}<0.01$, *** $\mathrm{p}<0.001$

M agnitudes: absolute value revision

	$\begin{array}{r} \mathrm{t}-1 _ \text {spring } \\ \mathrm{b} / \mathrm{se} \end{array}$	t-1 autumn b/se	$\begin{array}{r} \text { t_spring } \\ \text { b/se } \end{array}$	$\begin{array}{r} \text { t_autumn } \\ \text { b/se } \end{array}$	$\begin{array}{r} \mathrm{t}+1 _ \text {spring } \\ \mathrm{b} / \mathrm{se} \end{array}$	t+1 autumn b/se
peak	-0.313	-0.209	-0.078	0.336	0.339	0.238
	(0.47)	(0.42)	(0.42)	(0.22)	(0.19)	(0.16)
trough	0.526	0.040	-0.320	0.115	-0.000	-0.056
	(0.48)	(0.38)	(0.38)	(0.20)	(0.17)	(0.15)
constant	1.934***	1.817***	1.661***	1.106***	$0.948 * * *$	0.779***
	(0.34)	(0.33)	(0.32)	(0.18)	(0.13)	(0.10)
r2_w	0.013	0.002	0.004	0.018	0.023	0.018
r2_b	0.047	0.110	0.092	0.177	0.145	0.075
r2_o	0.013	0.002	0.005	0.007	0.014	0.012

[^0]
Overview of models (in-year)

		OG_f	D_turn	D_peak	D_trough
	M1 (t)	$-0.24^{* * *}$			
	M1 (t)	$-0.24^{* * *}$	-0.11		
	M1 (t)	$-0.24^{* * *}$		-0.49	0.55
ABS	M2 (tabs)	0.08			
ABS	M2 (t abs)		0.48^{*}		
ABS	M2 (t abs)	-0.08	0.46^{*}		
ABS	M2 (t abs)	-0.07		0.63^{*}	0.28

$\stackrel{\mathrm{CE}}{\mathrm{P}}$
(C)

Overview of models ($\mathrm{t}+1$)

		OG_f	D_turn	D_peak	D_trough
	M3 (t+1)	-0.26***			
	M 3 (t+1)	-0.26***	-0.09		
	M 3 (t+1)	-0.26***		0.38*	-0.40*
ABS	M 4 ($\mathrm{t}+1 \mathrm{abs}$)	0.00			
ABS	M 4 ($t+1$ abs)		0.06		
ABS	M 4 (t+1 abs)	0.03	0.17		
ABS	M 4 (t+1 abs)	0.04		-0.86	0.51*

CE
(C)

Overview of models (forecast, $t-1$)

		OG_f	D_turn	D_peak	D_trough
	M1 (t-1)	$-0.17^{* *}$			
	M1 (t-1)	$-0.18^{* *}$	0.08		
	M1 (t-1)	$-0.17^{* *}$		-0.33	0.33
ABS	M2 (t-1 abs)	0.16^{*}			
ABS	M2 (t-1 abs)		0.01		
ABS	M2 (t-1 abs)	0.16^{*}	0.06		
ABS	M2 (t-1 abs)	0.16^{*}		0.25	-0.05

CE
(C)

Visualization

$\stackrel{C}{C E S}$
(C)

Impact Fiscal Framework

- Sizable systematic revisions, not just at the turn
- Revisions for forecasts often as large as the CAB itself
- Revisions remain significant for in-year and t+1
\rightarrow Does this render the SGP assessment unjustifiably unreliable?

Which data matters when?

- $t+1$, in spring (also autumn), others complementary
- Revisions in t+1 much lower: 0.5pp
- Once under the EDP/SDP:
\rightarrow Improvement in the structural balance

PS

Magnitude of revisions: delta $C A B$

									Delta Cyclically adjusted balance							
	$\mathrm{t}-1$ Spr	$\mathrm{t}-1$ Aut	t Spr	t Aut	$\mathrm{t}+1 \mathrm{Spr}$	$\mathrm{t}+1$ Aut										
Mean	0.1	-0.2	0.0	-0.2	0.0	-0.1										
Stdev	1.8	1.6	1.7	1.8	1.0	0.8										
Min	-5.3	-5.7	-10.4	-11.4	-3.0	-3.2										
Max	7.6	4.4	3.5	3.7	4.4	4.2										
Median	0.1	0.0	0.2	-0.1	-0.1	0.0										
Mean abs	1.3	1.1	1.1	1.2	0.6	0.5										

CE
$\mathrm{P} \mathrm{S}^{2}$
(C)

Unwarranted and missed sanctions/EDP stepped up

Assuming a minimum structural improvement of 0.5\%:
\rightarrow How often could sanctions have been ill-fitting?
(Improvement assess for previous period)

M itigating factors

1. Structural balance slightly less revised
2. Assessing compliance over several years

- Preventive arm: average past two years
- Corrective arm: Debt reduction 3 years (tomardand backenar)
- Revisions of two consecutive years more likely to be offsetting than amplifying
- Offsetting revisions more 'powerful'

Safeguards

3. Revisions to some extent taken into account
4. Deviation from target up to 0.25% allowed
5. Exemption clauses
6. Flexibility

- EC communication
- Spain and Portugal

What about debt sustainability? (downwards bias)
M oving in Second-bests
CE
PS

www.ceps.eu

matthias.busse@ceps.eu

@CEPS thinktank

CE
PS
(C)

M agnitude of revisions: NL

Net Lending						
	t -1 Spr	t -1 Aut	t Spr	t Aut	$\mathrm{t}+1 \mathrm{Spr}$	$\mathrm{t}+1$ Aut
Mean	-0.3	-0.4	-0.1	0.0	-0.1	-0.1
Strdev	3.1	2.6	2.0	1.5	1.1	1.0
Min	-13.1	-13.0	-10.0	-7.6	-5.1	-3.8
Max	5.6	4.6	4.5	5.5	6.1	6.6
Median	0.4	0.1	0.1	0.1	0.0	0.0
Mean Abs	2.1	1.8	1.4	1.0	0.6	0.5

(C)

M odel 2: Separating peak and trough

Model 1: peak and trough

CE
PS

Separating Peak and Trough

Repeat in absolute value

Random-effects GLS regression
Group variable: id

[^0]: * $p<0.05$, ** $p<0.01$, *** $p<0.001$

