

Income insurance: a theoretical exercise with empirical application for the euro area

Gilles Mourre and Nicolas Carnot DG ECFIN European Commission

(co-authored with Phil Evans and Serena Fatica)

26 September 2016

The views are solely those of the authors

Outline

- **1. Motivation**
- 2. Design issues
- **3. Four possible schemes**
- 4. Retrospective simulations
- 5. Pros and cons of the example schemes
- 6. An Extension

Motivation

• Large, heterogenous and persistent cyclical patterns in EMU, generating tensions on the appropriate policy response

• More cross-regions risk-sharing in other successful monetary unions than in EMU (IMF, 2013). Commentators making suggestions for public risk sharing schemes.

 Paper espouses no specific proposal. Instead it provides an examination of the pros and cons.

• Schemes provide additionnal income insurance, but fully within the rule-based framework.

 Focus of paper: issues in scheme design, simulations including in "real time »

Insurance against income shocks in EMU remains low.

Source: IMF. Allard et al. (2013) Toward a Fiscal Union for the Euro Area

A "fiscal map" of challenges for 2017

Complementing fiscal governance

A fiscal capacity would **strengthen fiscal governance**.

There is a case for simultaneous implementation: effective risk sharing and risk reduction reinforce each other:

- Stringent fiscal rules to allow for the full play of economic stabilisers in bad times +discretionary policy margins
- Stabilisation capacity to provide ex post insurance for large shocks and to smooth out business cycle as risk sharing
- Credible prudent fiscal policy could reduce the sovereign rate spread in case of shocks ("confidence sharing")

Outline

- 1. Motivation
- 2. Design issues
- **3. Four possible schemes**
- 4. Retrospective simulations

5. Pros and cons of the example schemes

Issues in designing a "good" scheme (1)

Key principles/constraints:

- Political acceptability (von Hagen and Wyplosz, 2010) → Fully automatic
- Multiple schemes → Trade off simplicity vs nice features
- Prevention as much as support → Slow booms as well as reflate busts

Key features scrutinised in the paper:

- Should provide net gains in stabilising power
 → Measuring the cycle? Output gap, but examine real time and bais thereof
 - \rightarrow No claw-back

Issues in designing a "good" scheme (2)

Key features scrutinised in the paper (cont'd):

Should not compromise fiscal discipline
 → More emphasis on large shocks than mundane
 fluctuations

→ budgetary prudence: broadly balance fund

Must not be a permanent transfer scheme
 → address cyclical divergences, not permanent income differentials

 \rightarrow Requires stripping out trends (difficult)

Stabilise relative, or also common shocks?
 → Study both. The low inflation environment and limits to MP: stronger case for including c s.

Outline

- 1. Motivation
- 2. Design issues

3. Four possible schemes

4. Retrospective simulations

5. Pros and cons of the example schemes

Schemes 1 and 2: simple benchmarks

<u>Scheme 1</u>: Pure relative shocks

P = a * (OG - AOG)

Scheme 2: Simple relative and common shocks

P = a * OG

$$P = a * (OG-AOG) + a* AOG$$

P = Payment to/from schemeOG = Domestic output gapAOG = Euro area average output gap

Scheme 3: Preferred scheme to mainly stabilise relative shocks

When EMU booms

When EMU slumps

Payment when area wide average gap is positive (in an upturn):

Payment when area wide average gap is negative (downturn):

Scheme 4: Preferred scheme to stabilise both relative and common shocks

Outline

- 1. Motivation
- 2. Design issues
- **3. Four possible schemes**

4. Retrospective simulations

5. Pros and cons of the example schemes

Summary statistics for the schemes Ex post data, 2003-2012

	Frequency of scheme activity	Mean receipt	Mean payment
	%	% national GDP	
Scheme 1	100	0.3	0.3
Scheme 2	100	0.6	0.5
Scheme 3	68	0.4	0.4
Scheme 4	81	0.5	0.5

Flows to and from the fund (% area GDP)

Stabilisation properties Ex post data, 2003-2012

	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	Pure asymmetric	Pure asymmetric and common	Mainly asymmetric	Asymmetric and common + thresholds
Relative stabilisation	25%	25%	23%	23%
Absolute stabilisation Simple average Weighted average	8%	25%	11%	18%
	6%	25%	9%	19%
Cumulated balance (% area-wide GDP)	0.0	-1.2	-0.2	0.0
Average frequency of fund activity	100%	100%	68%	81%

Stabilisation properties over a longer period Ex post data, 1991-2012

	Scheme 1	Scheme 2	Scheme 3	Scheme 4
	Pure asymmetric	Pure asymmetric and common	Mainly asymmetric	Asymmetric and common + thresholds
Relative stabilisation	25%	25%	21%	22%
Absolute stabilisation <i>Simple average</i>	9%	25%	12%	19%
Weighted average	7%	25%	10%	19%
Cumulated balance (% area-wide GDP)	0.0	0.0	0.2	2.0
Average frequency of fund activity	100%	100%	62%	73%

Real time vs ex post: relative stabilisation

Real time vs ex post: absolute stabilisation

Budgetary costs (% euro area GDP)

Outline

- 1. Motivation
- 2. Design issues
- **3. Four possible schemes**
- 4. Retrospective simulations

5. Pros and cons of the example schemes

Summary characteristics of the schemes

Scheme 1	Scheme 2	Scheme 3	Scheme 4
Only	All	Focuses on	Both
asymmetric	asymmetric	asymmetric	asymmetric
shocks	and common	shocks	and common
	shocks		shocks
Can be		Focuses on large	
procyclical		shocks	Not intervening in 'normal
		Avoids	times'
		procyclicality	
Always balanced	Significant budgetary	Little budgetary risk	Modest budgetary risk
	risk		J

Stabilisation properties Real time data, 2003-2012

Scheme 1	Scheme 2	Scheme 3	Scheme 4
Pure asymmetric	Pure asymmetric and common	Mainly asymmetric	Asymmetric and common + thresholds
12%	11%	10%	11%
2%	16%	5%	12%
2%	13%	2%	11%
0.0	-4.2	-0.8	-2.1
100%	100%	61%	74%
	Scheme 1 Pure 12% 2% 2% 0.0 100%	Scheme 1Scheme 2Pure asymmetricPure asymmetric and common12%11%2%16%2%13%0.0-4.2100%100%	Scheme 1Scheme 2Scheme 3Pure asymmetric and commonMainly asymmetric12%11%10%2%16%5%2%13%2%0.0-4.2-0.8100%100%61%

Outline

- 1. Motivation
- 2. Design issues
- **3. Four possible schemes**
- 4. Retrospective simulations

5. Pros and cons of the example schemes

6. An extension

An extension

- Using output gap: could we do better?
- Yes, using unemployment as the triggering variable! Easier to communicate, observable, little revised and harmonised
- Using a double condition with level and change
- But similar features: automatic, symmetric functioning and broadly balance (see Carnot, Kizior & Mourre, *forthcoming*)

An extension: broadly balanced

An extension: stabilisation Annual transfer

Source: Carnot, Kizior & Mourre, forthcoming

An extension: stabilisation Annual transfer: eg ES

Thank you for your attention

Gilles Mourre DG ECFIN European Commission

(co-authored with Nicolas Carnot, Phil Evans and Serena Fatica)

20 May 2016

The views are solely those of the authors

30

Summary statistics for the schemes Real-time data, 2003-2012

	Frequency of scheme activity	Mean receipt	Mean payment	
	%	% national GDP		
Scheme 1	100	0.3	0.3	
Scheme 2	100	0.5	0.3	
Scheme 3	61	0.3	0.3	
Scheme 4	74	0.5	0.3	